# Flattening of Basic Blocks for Preaccumulation

#### J. Utke

given a sequence of statements: "How can I get and use a DAG for preaccumulation?"

- where is this needed
- why doesn't somebody else do it for me
- how is it done
- what makes it ambiguous
- which choices do we have

ACTS project and implementation in OpenAD



### where do we need it?

### cross country elimination

- vertex/edge/face elimination
- scope beyond single statement
- pre-accumulate Jacobian entries  $j_{yx}$
- and propagate forward saxpy( $j_{yx}$ ,  $\dot{x}$ ,  $\dot{y}$ )
- or stack them, then reverse through the stack
- storing cheaper than recomputes
- fewer Jacobian entries than intermediate values, etc.
- or scarcity preserving elimination
- concentrate on basic blocks (loop body, low level routine with straight line code)
- need a DAG
- note, can extend beyond basic block scope (resolve side effects)

# Shouldn't the compiler do it?

#### YES!

- code optimization
- register allocation
- code generation, etc.

BUT, we do high level source to source transformation

- transformation starts after parsing/canonicalizing/filtering
- compiler code optimization happens at a later stage
- $\bullet \rightarrow \text{not available}$
- unless we go to low level transformation or elevate compiler optimization

We have to do it ourselves.

We can do what we want  $\odot$ .

# simple flattening

• sequence of assignments in a basic block

• front end provides rhs expressions as graphs

• algorithm to flatten them into a single graph G:

- iterate through all assignments in sequence order
- replicate the rhs $_{\rm s}$  in G
- identify variables
  - \* within a rhs, if the front-end hasn't already done that (size↓)
  - \* across rhss (size \( \)
  - \* between rhss and lhss, preserves semantics!
- track the most recent assignment to a v
- variable identification is easy for plain scalar values (syntactic equivalence)
- otherwise through (flow-sensitive) must alias analysis, i.e. identification by unique (virtual) address.

simple case:

 $a_1 : z = -(z * x)$ 

 $a_2$ : y=z/x



# why (virtual) addresses?

we have vectors, pointers, etc.  $\rightarrow$  likely only have may alias

with aliasing:

$$a_1: *z=-(*z*x)$$

$$a_2: y=*z/x$$



- simple algorithm creates new vertex if not uniquely identifiable
- G is incomplete (missing edges)
- $(V, E \cup A)$  may-aliases establish virtual edges  $\in A$  indicating possible identification (only want references of rhs vertex to preceding lhs<sub>s</sub>)
  - $G' = (V, E \cup A)$  is a set of possible dags, only one element preserves semantics
  - resolve ambiguities by splitting

## edge subgraphs

edge split:





- define edge subgraph  $G_s = (V_s, E_s)$  of G = (V, E) with  $V_s \subseteq V$  and  $E_s \subseteq E$  such that if  $(v, w) \in E_s$  then  $v, w \in V_s$  and if  $(t, u), (v, w) \in E_s \land (u, v) \in E$  then  $(u, v) \in E_s$
- define split of G into edge subgraphs  $G_i = (V_i, E_i)$  such that  $E = \bigcup E_i \wedge E_i \cap E_j = \emptyset$  (reverse of flatten; example:  $E_1, E_2$ )
- split  $(V, E \cup A)$  into edge subgraphs  $G_i$  that
  - have  $A_i = \emptyset$ , i.e. locally unambiguous dependency information
  - are (partially) ordered with ' $\prec$ ' such that  $\forall (v, w) \in \mathcal{A} : v \in G_j$  then  $w \in G_k, G_j \prec G_k$  and
  - $\forall (t, u) \in \mathcal{A} : u \in G_j \text{ then } t \in G_i, G_i \prec G_j$

## split choices



splitting

- criteria define a minimal number of splits
- $\exists movable edges \rightarrow split itself isn't fully defined$

in the example:

- $A = \{(v, w), (v', w)\}$
- movable edges (t, u) if  $\exists P_{u,v}, P_{u,v'}, P_{w,t}$
- space for optimization, e.g.  $\sum n_i m_i p + ops(G_i); \text{ gains }?$
- array ops
- minimal cost doesn't imply minimal split count (scarcity)

# in practice I

w/o array ops

- pick splits along assignment borders
- preserves semantics

determining Jacobian entries?



$$ullet egin{aligned} ullet egin{aligned$$

- $I \in \mathbb{R}^{s_i \times s_i}, s_i = |\{(v, w) \in \mathcal{I}, v \in V_j, w \in V_k \ j < i < k\}|$
- $\mathcal{I}$  are identities between vertices,  $\boldsymbol{P}_i^{(r)}, \boldsymbol{P}_i^{(c)}$  permute rows / columns
- $\mathcal{I}, \boldsymbol{P}_i^{(r)}, \boldsymbol{P}_i^{(c)}$  only known at runtime
- inputs are minimal vertices in  $G_i$  (easy)
- $| \text{maximal vertices } | \subseteq out(G_i) \subseteq \text{final lhs}_s$
- assuming  $out(G_i) \equiv final lhs_s$  complicates the graph
  - $\rightarrow$  basic block elimination looses potential



## in practice II



#### alias++:

- scalar replacement of pointer/array derefs & alias analysis block local
- $\equiv |ud|$ -chain information (possible definitions for vertex v)
- we need:
  - reference  $r(ud_v)$  to most recent definition (i.e. assignment) in this basic block
  - determine if definitions are
    - \* ambiguous (inside, both sides, outside), or
    - \* unique (inside, outside)

#### Jacobian rows:

- u-chain information (possible use of this lhs v)  $r(du_v)$  referencing the last use in this basic block, if  $\exists$
- v output in  $G_i$  ?:  $\exists r(du_v) \land r(du_v) \notin V_i \lor \exists r(du_v)$

missing information forces splits/Jacobian rows (conservative default) can degenerate to statement level pre-accumulation

## weird cases



### non-maximal dependent:

- vertex elimination requires vertex/edge duplication
- edge elimination has constraints to back elimination steps
- face elimination not affected

#### y = x:

- standalone vertex  $\rightarrow$  filtered out
- independent/dependent merge  $\rightarrow$  insert trivial edge  $\rightarrow$  constant folding

# subroutine calls, extending scope

### SR call treatment:

- side effect free?
- user defined black box?

### extending the scope:

- no restrictions on du/ud chains
- looking at loops!
- handling branches and inlining?





Utke

U of C / ANL

## Summary

implemented and used in OpenAD

- front-end parses code and provides intermediate representation
- OpenAnalysis component provides alias, ud/du chain included in IR
- algorithm builds DAGs
- heuristic approximates optimal elimination sequence
- algorithm generates partial calculation and elimination steps code to IR
- algorithm adds saxpy calls to IR
- front-end unparses  $IR \rightarrow ad code$

Higher level approaches depend on coding style